

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

SPG-Separation Axioms

S. Balasubramanian*1, C. Sandhya²

*1Department of Mathematics, Govt. Arts College(A), Karur – 639 005, Tamilnadu, India 2Department of Mathematics, C.S.R. Sarma College, Ongole 523 001, Andhrapradesh, India mani55682@rediffmail.com

Abstract

In this paper by using spg-open sets we define almost spg-normality and mild spg-normality also we continue the study of further properties of spg-normality. We show that these three axioms are regular open hereditary. We also define the class of almost spg-irresolute mappings and show that spg-normality is invariant under almost spg-irresolute M-spg-open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Keywords and Phrases: spg-open, semiopen, semipreopen, almost normal, midly normal, M-spg-closed, M-spg-open, rc-continuous.

Introduction

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T_1 and T_2 spaces, namely, S₁ and S₂. Next, in 1982, S.P. Arva et al have introduced and studied the concept of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P.Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US spaces. Inspired with these we introduce spg-Normal Almost- spg-Normal, Mildly- spg-Normal, spg-US, spg-S₁ and spg-S₂. Also we examine spg-convergence, sequentially spgcompact, sequentially spg-continuous maps, and sequentially sub spg-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

Preliminaries

Definition 2.1: $A \subset X$ is called

(i) g-closed if cl $A\subseteq U$ whenever $A\subseteq U$ and U is open in X. (ii) pg-closed if $pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is preopen in X. (iii) spg-closed if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is spopen in X.

Definition 2.2: A space X is said to be

(i) T_1 (T_2) if for any $x \neq y$ in X, there exist (disjoint) open sets U; V in X such that $x \in U$ and $y \in V$. (ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X. (iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F_1 and F_2 , there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

ISSN: 2277-9655 Impact Factor: 1.852

- (iv) almost normal if for each closed set A and each regular closed set B such that $A \cap B = \emptyset$, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$. (v) weakly regular if for each pair consisting of a regular closed set A and a point x such that $A \cap \{x\} = \emptyset$, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$. (vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.
- (vii) R_0 if for any point x and a closed set F with $x \notin F$ in X, there exists a open set G containing F but not x. (viii) R_1 iff for $x, y \in X$ with $cl\{x\} \neq cl\{y\}$, there exist disjoint open sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$. (ix) US-space if every convergent sequence has exactly one limit point to which it converges. (x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges. (xi) pre- S_1 if it is pre-US and every sequence S_1 pre-converges with subsequence of S_1 pre-side points.

(xii) pre-S₂ if it is pre-US and every sequence $\langle x_n \rangle$ in X pre-converges which has no pre-side point.

- (xiii) is weakly countable compact if every infinite subset of X has a limit point in X.
- (xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X.
- **Definition 2.3:** Let $A \subset X$. Then a point x is said to be a (i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.
- (ii) T_0 -limit point of A if each open set containing x contains some point y of A such that $cl\{x\} \neq cl\{y\}$, or equivalently, such that they are topologically distinct.
- (iii) pre-T₀-limit point of A if each open set containing x contains some point y of A such that $pcl\{x\} \neq pcl\{y\}$, or equivalently, such that they are topologically distinct.
- **Note 1:** Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.
- **Example 1:** Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T_0 -limit points of the set $\{b, c\}$. Further d is a T_0 -limit point of $\{b, c\}$.
- **Example 2:** Let X=(0,1) and $\tau=\{\phi,X,$ and $U_n=(0,1-1/n),$ $n=2,3,4,\ldots\}$. Then every point of X is a limit point of X. Every point of $X\sim U_2$ is a T_0 -limit point of X, but no point of U_2 is a T_0 -limit point of X.
- **Definition 2.4:** A set *A* together with all its T_0 -limit points will be denoted by T_0 -cl*A*.
- **Note 2:** i. Every T_0 -limit point of a set A is a limit point of the set but the converse is not true in general.
 - ii. In T₀-space both are same.
- **Note 3:** R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$
- **Note 4:** Every countable compact space is weakly countable compact but converse is not true in general. However, a T_1 -space is weakly countable compact iff it is countable compact.

spg-T₀ LIMIT POINT

Definition 3.01: In X, a point x is said to be a spg- T_0 -limit point of A if each spg-open set containing x contains some point y of A such that $spgcl\{x\} \neq spgcl\{y\}$, or equivalently; such that they are

ISSN: 2277-9655 Impact Factor: 1.852

Note 5: regular open set \Rightarrow open set \Rightarrow pre-open set \Rightarrow spg-open set we have

topologically distinct with respect to spg-open sets.

r- T_0 -limit point \Rightarrow T_0 -limit point \Rightarrow pre- T_0 -limit point \Rightarrow spg- T_0 -limit point

Example 3: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. For $A = \{a, b, c\}$, a and b are *spg-T*₀-limit point.

Definition 3.02: A set A together with all its spg- T_0 -limit points is denoted by T_0 -spgcl(A)

Lemma 3.01: If x is a spg- T_0 -limit point of a set A then x is spg-limit point of A.

Lemma 3.02:

- (i) If X is $spg-T_0$ -space then every $spg-T_0$ -limit point and every spg-limit point are equivalent.
- (ii)If X is r- T_0 -space then every spg- T_0 -limit point and every spg-limit point are equivalent.

Theorem 3.03: For $x \neq y \in X$,

- (i) x is a spg- T_0 -limit point of $\{y\}$ iff $x \notin spgcl\{y\}$ and $y \in spgcl\{x\}$.
- (ii) x is not a spg- T_0 -limit point of $\{y\}$ iff either $x \in spgcl\{y\}$ or $spgcl\{x\} = spgcl\{y\}$.
- (iii) x is not a spg- T_0 -limit point of $\{y\}$ iff either $x \in spgcl\{y\}$ or $y \in spgcl\{x\}$.

Corollary 3.04:

- (i) If x is a spg- T_0 -limit point of $\{y\}$, then y cannot be a spg-limit point of $\{x\}$.
- (ii) If $spgcl\{x\} = spgcl\{y\}$, then neither x is a $spg-T_0$ -limit point of $\{y\}$ nor y is a $spg-T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no spg- T_0 -limit point in X, then $spgclA = spgcl\{x\}$ for all $x \in spgcl\{A\}$.

Lemma 3.05: In X, if x is a spg-limit point of a set A, then in each of the following cases x becomes T_0 -limit point of A $(\{x\} \neq A)$.

- (i) $spgcl\{x\} \neq spgcl\{y\}$ for $y \in A$, $x \neq y$.
- (ii) $spgcl\{x\} = \{x\}$
- (iii) X is a spg- T_0 -space.
- (iv) $A \sim \{x\}$ is spg-open

$spg-T_0$ **AND** $spg-R_i$ **AXIOMS**, i = 0,1

In view of Lemma 3.6(iii), spg- T_0 -axiom implies the equivalence of the concept of limit point of a set with that of spg- T_0 -limit point of the set. But for the converse, if $x \in spgcl\{y\}$ then $spgcl\{x\} \neq spgcl\{y\}$ in general, but if x is a spg- T_0 -limit point of $\{y\}$, then $spgcl\{x\} = spgcl\{y\}$

Lemma 4.01: In a space X, a limit point x of $\{y\}$ is a spg- T_0 -limit point of $\{y\}$ iff $spgcl\{x\} \neq spgcl\{y\}$.

This lemma leads to characterize the equivalence of spg- T_0 -limit point and spg-limit point of a set as the spg- T_0 -axiom.

Theorem 4.02: The following conditions are equivalent:

- (i) X is a spg- T_0 space
- (ii) Every spg-limit point of a set A is a spg-T₀-limit point of A
- (iii) Every r-limit point of a singleton set {x} is a spg-T₀-limit point of {x}
- (iv) For any x, y in X, $x \neq y$ if $x \in spgcl\{y\}$, then x is a $spg-T_0$ -limit point of $\{y\}$

Note 6: In a spg- T_0 -space X if every point of X is a r-limit point of X, then every point of X is spg- T_0 -limit point of X. But a space X in which each point is a spg- T_0 -limit point of X is not necessarily a spg- T_0 -space

Theorem 4.03: The following conditions are equivalent:

- (i) X is a spg- R_0 space
- (ii) For any x, y in X, if $x \in spgcl\{y\}$, then x is not a $spg-T_0$ -limit point of $\{y\}$
- (iii) A point spg-closure set has no spg-T₀-limit point in X
- (iv) A singleton set has no spg- T_0 -limit point in X.

Theorem 4.04: In a spg- R_0 space X, a point x is spg- T_0 —limit point of A iff every spg-open set containing x contains infinitely many points of A with each of which x is topologically distinct

Theorem 4.05: X is $spg-R_0$ space iff a set A of the form $A = \bigcup spgcl\{x_{i \ i = 1 \ to \ n}\}$ a finite union of point closure sets has no $spg-T_0$ —limit point.

If spg- R_0 space is replaced by rR_0 space in the above theorem, we have the following corollaries:

Corollary 4.06: The following conditions are equivalent:

- (i) X is a r- R_0 space
- (ii) For any x, y in X, if $x \in spgcl\{y\}$, then x is not a $spg-T_0$ —limit point of $\{y\}$

(iii) A point spg-closure set has no spg- T_0 -limit point in X

ISSN: 2277-9655 Impact Factor: 1.852

(iv) A singleton set has no spg- T_0 -limit point in X.

Corollary 4.07: In an rR_0 -space X,

- (i) If a point x is rT_0 —limit point of a set then every spg-open set containing x contains infinitely many points of A with each of which x is topologically distinct.
- (ii) If a point x is $spg-T_0$ —limit point of a set then every spg-open set containing x contains infinitely many points of A with each of which x is topologically distinct.
- (iii)If $A = \bigcup spgcl\{x_{i, i=1 \text{ to } n}\}$ a finite union of point closure sets has no $spg-T_0$ —limit point.
- (iv)If $X = \bigcup spgcl\{x_{i, i=1 \text{ to } n}\}$ then X has no $spg-T_0$ —limit point.

Various characteristic properties of *spg*-T₀-limit points studied so far is enlisted in the following theorem.

Theorem 4.08: In a spg- R_0 -space, we have the following:

- (i) A singleton set has no spg- T_0 -limit point in X.
- (ii) A finite set has no spg- T_0 -limit point in X.
- (iii) A point spg-closure has no set spg- T_0 -limit point in X
- (iv) A finite union point spg-closure sets have no set spg-T₀-limit point in X.
- (v) For $x, y \in X$, $x \in T_0$ —spgcl $\{y\}$ iff x = y.
- (vi) For any $x, y \in X$, $x \neq y$ iff neither x is $spg-T_0$ —limit point of $\{y\}$ nor y is $spg-T_0$ —limit point of $\{x\}$
- (vii) For any x, $y \in X$, $x \neq y$ iff T_0 $spgcl\{x\} \cap T_0$ $spgcl\{y\} = \phi$.
- (viii)Any point $x \in X$ is a $spg-T_0$ -limit point of a set A in X iff every spg-open set containing x contains infinitely many points of A with each which x is topologically distinct.

Theorem 4.09: X is $spg-R_1$ iff for any spg-open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a spg-open set V in X such that $y \in V \subset U$, $x \notin V$.

Lemma 4.10: In $spg-R_1$ space X, if x is a $spg-T_0$ -limit point of X, then for any non empty spg-open set U, there exists a non empty spg-open set V such that $V \subset U$, $x \not\in spgcl(V)$.

Lemma 4.11: In a spg- regular space X, if x is a spg- T_0 —limit point of X, then for any non empty spg-open set U, there exists a non empty spg-open set V such that $\operatorname{spgcl}(V) \subset U$, $x \notin \operatorname{spgcl}(V)$.

ISSN: 2277-9655 Impact Factor: 1.852

Corollary 4.12: In a regular space X,

- (i) If x is a spg-T₀-limit point of X, then for any non empty spg-open set U, there exists a non empty spg-open set V such that spgcl(V)⊂U, x∉ spgcl(V).
- (ii) If x is a T₀-limit point of X, then for any non empty spg-open set U, there exists a non empty spg-open set V such that spgcl(V) ⊂U, x∉ spgcl(V).

Theorem 4.13: If X is a spg-compact spg- R_1 -space, then X is a Baire Space.

Proof: Let $\{A_n\}$ be a countable collection of *spg*-closed sets of X, each A_n having empty interior in X. Take A₁, since A_1 has empty interior, A_1 does not contain any spgopen set say U_0 . Therefore we can choose a point $y \in U_0$ such that $y \notin A_1$. For X is spg-regular, and $y \in (X \sim A_1) \cap U_0$, a spg-open set, we can find a spg-open set U_1 in X such that $y \in U_1$, $spgcl(U_1) \subset (X \sim A_1) \cap U_0$. Hence U₁ is a non empty spg-open set in X such that $spgcl(U_1) \subset U_0$ and $spgcl(U_1) \cap A_1 = \emptyset$. Continuing this process, in general, for given non empty spg-open set U_n-₁, we can choose a point of U_{n-1} which is not in the spgclosed set A_n and a spg-open set U_n containing this point such that $spgcl(U_n) \subset U_{n-1}$ and $spgcl(U_n) \cap A_n = \emptyset$. Thus we get a sequence of nested non empty spg-closed sets which satisfies the finite intersection property. Therefore $\cap spgcl(U_n) \neq \emptyset$. Then some $x \in \cap spgcl(U_n)$ which in turn implies that $x \in U_{n-1}$ as $spgcl(U_n) \subset U_{n-1}$ and $x \notin A_n$ for

Corollary 4.14: If X is a compact $spg-R_1$ -space, then X is a Baire Space.

Corollary 4.15: Let X be a spg-compact spg- R_1 -space. If $\{A_n\}$ is a countable collection of spg-closed sets in X, each A_n having non-empty spg-interior in X, then there is a point of X which is not in any of the A_n .

Corollary 4.16: Let X be a spg-compact R_1 -space. If $\{A_n\}$ is a countable collection of spg-closed sets in X, each A_n having non-empty spg- interior in X, then there is a point of X which is not in any of the A_n .

Theorem 4.17: Let X be a non empty compact $spg-R_1$ space. If every point of X is a $spg-T_0$ -limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a spg- T_0 -limit point of X, X must be infinite. If X is countable, we construct a sequence of spg- open sets $\{V_n\}$ in X as follows:

Let $X = V_1$, then for x_1 is a spg- T_0 -limit point of X, we can choose a non empty spg-open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin spg$ cl V_2 . Next for x_2 and non empty spg-open set V_2 , we can choose a non empty spg-open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin spg$ cl V_3 . Continuing this process for each x_n and a non empty spg-open set V_n , we can choose a non empty spg-open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin spg$ cl V_{n+1} .

Now consider the nested sequence of spg-closed sets $spgclV_1 \supset spgclV_2 \supset spgclV_3 \supset \dots \supset spgclV_n \supset \dots$. Since X is spg-compact and $\{spgclV_n\}$ the sequence of spg-closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in spgclV_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

Corollary 4.18: Let X be a non empty spg-compact spg- R_1 -space. If every point of X is a spg- T_0 -limit point of X then X is uncountable

spg-T₀-IDENTIFICATION SPACES AND spg-SEPARATION AXIOMS

Definition 5.01: Let (X, τ) be a topological space and let \Re be the equivalence relation on X defined by $x\Re y$ iff $spgcl\{x\} = spgcl\{y\}$

Problem 5.02: show that $x\Re y$ iff $spgcl\{x\} = spgcl\{y\}$ is an equivalence relation

Definition 5.03: The space $(X_0, Q(X_0))$ is called the spg- T_0 -identification space of (X, τ) , where X_0 is the set of equivalence classes of \Re and $Q(X_0)$ is the decomposition topology on X_0 .

Let P_X : $(X, \tau) \rightarrow (X_0, Q(X_0))$ denote the natural map

Lemma 5.04: If $x \in X$ and $A \subset X$, then $x \in spgclA$ iff every spg-open set containing x intersects A.

Theorem 5.05: The natural map $P_X:(X,\tau) \to (X_0, Q(X_0))$ is closed, open and $P_X^{-1}(P_X(O)) = O$ for all $O \in PO(X,\tau)$ and $(X_0, Q(X_0))$ is $\operatorname{spg-}T_0$

Proof: Let $O \in PO(X, \tau)$ and let $C \in P_X(O)$. Then there exists $x \in O$ such that $P_X(x) = C$. If $y \in C$, then $spgcl\{y\} = spgcl\{x\}$, which, by lemma, implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $P_X \ ^{-1}(P_X(U)) = U$ for all $U \in \tau$, which implies P_X is closed and open.

Let G, $H \in X_0$ such that $G \neq H$; let $x \in G$ and $y \in H$. Then $spgcl\{x\} \neq spgcl\{y\}$, which implies $x \notin spgcl\{y\}$ or

 $y \notin spgcl\{x\}$, say $x \notin spgcl\{y\}$. Since P_X is continuous and open, then $G \in A = P_X\{X \sim spgcl\{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

Theorem 5.06: The following are equivalent:

(i) X is $spgR_0$ (ii) $X_0 = \{spgcl\{x\}: x \in X\}$ and (iii) $(X_0, Q(X_0))$ is $spgT_1$

Proof: (i) \Rightarrow (ii) Let $C \in X_0$, and let $x \in C$. If $y \in C$, then $y \in spgcl\{y\} = spgcl\{x\}$, which implies $C \in spgcl\{x\}$. If $y \in spgcl\{x\}$, then $x \in spgcl\{y\}$, since, otherwise, $x \in X \sim spgcl\{y\} \in PO(X, \tau)$ which implies $spgcl\{x\} \subset X \sim spgcl\{y\}$, which is a contradiction. Thus, if $y \in spgcl\{x\}$, then $x \in spgcl\{y\}$, which implies $spgcl\{y\} = spgcl\{x\}$ and $y \in C$. Hence $X_0 = \{spgcl\{x\} : x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then there exists x, $y \in X$ such that $A = spgcl\{x\}$; $B = spgcl\{y\}$, and $spgcl\{x\} \cap spgcl\{y\} = \phi$. Then $A \in C = P_X$ $(X - spgcl\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $spg-T_1$

(iii) \Rightarrow (i) Let $x \in U \in \alpha GO(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin spgcl\{y\}$, which implies $C_x \neq C_y$ and there exists spgopen set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in SPGO(X)$ and $x \notin B$, which implies $y \notin spgcl\{x\}$. Thus $spgcl\{x\} \subset U$. This is true for all $spgcl\{x\}$ implies $\cap spgcl\{x\} \subset U$. Hence X is $spg-R_0$

Theorem 5.07: (X, τ) is spg- R_1 iff $(X_0, Q(X_0))$ is spg- T_2

The proof is straight forward from theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is $spg-T_i$; i=0,1,2. iff there exists a spg-continuous, almost-open, 1-1 function from (X, τ) into a $spg-T_i$ space; i=0,1,2 respectively.

Theorem 5.09: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is spg-continuous, spg-open, and $x, y \in X$ such that $spgcl\{x\} = spgcl\{y\}$, then $spgcl\{f(x)\} = spgcl\{f(y)\}$.

Theorem 5.10: The following are equivalent

- (i) (X, τ) is spg- T_0
- (ii) Elements of X_0 are singleton sets and

(iii) There exists a spg-continuous, spg-open, 1-1 function $f: (X, \tau) \rightarrow (Y, \sigma)$, where (Y, σ) is spg- T_0

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $spgcl\{f(x)\} \neq spgcl\{f(y)\}$. Then by theorem 5.09, $spgcl\{x\} \neq spgcl\{y\}$. Hence (X, τ) is $spg-T_0$

ISSN: 2277-9655 Impact Factor: 1.852

Corollary 5.11: A space (X, τ) is $\operatorname{spg-}T_i$; i=1,2 iff (X, τ) is $\operatorname{spg-}T_{i-1}$; i=1,2, respectively, and there exists a $\operatorname{spg-}$ continuous, $\operatorname{spg-}$ open, 1-1 function $f:(X, \tau)$ into a $\operatorname{spg-}T_0$ space.

Definition 5.04: $f: X \rightarrow Y$ is point–spg-closure 1–1 iff for $x, y \in X$ such that $spgcl\{x\} \neq spgcl\{y\}, \quad spgcl\{f(x)\} \neq spgcl\{f(y)\}.$

Theorem 5.12:

(i)If $f: (X, \tau) \rightarrow (Y, \sigma)$ is point—spg-closure 1–1 and (X, τ) is spg- T_0 , then f is 1–1

(ii)If $f: (X, \tau) \rightarrow (Y, \sigma)$, where (X, τ) and (Y, σ) are spg- T_0 then f is point-spg-closure I-I iff f is I-I

The following result can be obtained by combining results for $spg-T_0-$ identification spaces, spg-induced functions and $spg-T_i$ spaces; i=1,2.

Theorem 5.13: X is $\operatorname{spg-}R_i$; i=0,1 iff there exists a $\operatorname{spg-}$ continuous , almost-open point- $\operatorname{spg-}$ closure l-1 function $f:(X, \tau)$ into a $\operatorname{spg-}R_i$ space; i=0,1 respectively.

spg-Normal; Almost spg-normal and Mildly spg-normal spaces

Definition 6.1: A space X is said to be spg-normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint spg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is spg-normal.

Example 5: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is *spg*-normal, normal and almost normal.

We have the following characterization of spg-normality. **Theorem 6.1**: For a space X the following are equivalent:

- (i) *X* is spg-normal.
- (ii) For every pair of open sets U and V whose union is X, there exist spg-closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$.
- (iii) For every closed set F and every open set G containing F, there exists a spg-open set U such that $F \subset U \subset spgcl(U) \subset G$.

Proof: (i) \Rightarrow (ii): Let *U* and *V* be a pair of open sets in a spg-normal space *X* such that $X = U \cup V$. Then X - U, X - V are disjoint closed sets. Since *X* is spg-normal there exist

disjoint spg-open sets U_I and V_I such that $X-U \subset U_I$ and $X-V \subset V_I$. Let $A = X-U_I$, $B = X-V_I$. Then A and B are spg-closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(b) \Rightarrow (c): Let F be a closed set and G be an open set containing F. Then X–F and G are open sets whose union is X. Then by (b), there exist spg-closed sets W_1 and W_2 such that $W_1 \subset X$ –F and $W_2 \subset G$ and $W_1 \cup W_2 = X$. Then $F \subset X$ – W_1 , X– $G \subset X$ – W_2 and (X– $W_1)$ $\cap (X$ – $W_2) = \emptyset$. Let U = X– W_1 and V = X– W_2 . Then U and V are disjoint spg-open sets such that $F \subset U \subset X$ – $V \subset G$. As X–V is spg-closed set, we have $spgcl(U) \subset X$ –V and $F \subset U \subset spgcl(U) \subset G$.

(c) \Rightarrow (a): Let F_1 and F_2 be any two disjoint closed sets of X. Put $G = X - F_2$, then $F_1 \cap G = \emptyset$. $F_1 \subset G$ where G is an open set. Then by (c), there exists a spg-open set U of X such that $F_1 \subset U \subset spgcl(U) \subset G$. It follows that $F_2 \subset X - spgcl(U) = V$, say, then V is spg-open and $U \cap V = \emptyset$. Hence F_1 and F_2 are separated by spg-open sets U and V. Therefore X is spg-normal.

Theorem 6.2: A regular open subspace of a spg-normal space is spg-normal.

Example 6: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is spgnormal and spg-regular.

However we observe that every spg-normal spg-R₀ space is spg-regular.

Definition 6.2: A function $f:X \to Y$ is said to be almost – spg-irresolute if for each x in X and each spg-neighborhood V of f(x), $spgcl(f^{-1}(V))$ is a spg-neighborhood of x.

Clearly every spg-irresolute map is almost spg-irresolute. The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: f is almost spg-irresolute iff $f^1(V) \subset \text{spg-int}(spgcl(f^1(V))))$ for every $V \in SPGO(Y)$.

Lemma 6.2: f is almost spg-irresolute iff $f(spgcl(U)) \subset spgcl(f(U))$ for every $U \in SPGO(X)$.

Proof: Let $U \in SPGO(X)$. Suppose $y \notin spgcl(f(U))$. Then there exists $V \in SPGO(y)$ such that $V \cap f(U) = \emptyset$. Hence $f^{-1}(V) \cap U = \emptyset$. Since $U \in SPGO(X)$, we have $spg-int(spgcl(f^{-1}(V))) \cap spgcl(U) = \emptyset$. Then by lemma 6.1, $f^{-1}(V) \cap spgcl(U) = \emptyset$ and hence $V \cap f(spgcl(U)) = \emptyset$. This implies that $y \notin f(spgcl(U))$.

Conversely, if $V \in SPGO(Y)$, then W = X- $spgcl(f^1(V))) \in SPGO(X)$. By hypothesis, $f(spgcl(W)) \subset spgcl(f(W))$) and hence X- $spg-int(spgcl(f^1(V))) = spgcl(W) \subset f^1(spgcl(f(W))) \subset f(spgcl(f(X-f^1(V)))) \subset f^1(Spgcl(Y-V)) = f^{-1}(Y-V) = X-f^1(V)$. Therefore, $f^1(V) \subset Spg-int(spgcl(f^1(V)))$. By lemma 6.1, f is almost Spg-irresolute.

Now we prove the following result on the invariance of spg-normality.

Theorem 6.3: If f is an M-spg-open continuous almost spg-irresolute function from a spg-normal space X onto a space Y, then Y is spg-normal.

ISSN: 2277-9655 Impact Factor: 1.852

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^1(A)$ is closed and $f^1(B)$ is an open set of X such that $f^1(A) \subset f^1(B)$. As X is spg-normal, there exists a spg-open set U in X such that $f^1(A) \subset U \subset spgcl(U) \subset f^1(B)$. Then $f(f^1(A)) \subset f(U) \subset f(spgcl(U)) \subset f(f^1(B))$. Since f is M-spg-open almost spg-irresolute surjection, we obtain $A \subset f(U) \subset spgcl(f(U)) \subset B$. Then again by Theorem 6.1 the space Y is spg-normal.

Lemma 6.3: A mapping f is M-spg-closed if and only if for each subset B in Y and for each spg-open set U in X containing $f^1(B)$, there exists a spg-open set V containing B such that $f^1(V) \subset U$.

Theorem 6.4: If f is an M-spg-closed continuous function from a spg-normal space onto a space Y, then Y is spg-normal.

Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

Theorem 6.5: If f is an M-spg-closed map from a weakly Hausdorff spg-normal space X onto a space Y such that $f^1(y)$ is S-closed relative to X for each $y \in Y$, then Y is spg- T_2 .

Proof: Let y_1 and y_2 be any two distinct points of Y. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [9]. As X is spg-normal, there exist disjoint spg-open sets V_1 and V_2 such that $f^{-1}(y_i) \subset V_i$, for i = 1,2. Since f is M-spg-closed, there exist spg-open sets U_1 and U_2 containing y_1 and y_2 such that $f^{-1}(U_i) \subset V_i$ for i = 1,2. Then it follows that $U_1 \cap U_2 = \emptyset$. Hence Y is spg- T_2 .

Theorem 6.6: For a space *X* we have the following:

- (a) If X is normal then for any disjoint closed sets A and B, there exist disjoint spg-open sets U, V such that $A \subset U$ and $B \subset V$;
- (b) If X is normal then for any closed set A and any open set V containing A, there exists an spg-open set U of X such that $A \subset U \subset spgcl(U) \subset V$.

Definition 6.2: X is said to be almost spg-normal if for each closed set A and each regular closed set B such that $A \cap B = \emptyset$, there exist disjoint spg-open sets U and V such that $A \subset U$ and $B \subset V$.

Clearly, every spg-normal space is almost spg-normal, but not conversely in general.

Now, we have characterization of almost spg-normality in the following.

Theorem 6.7: For a space X the following statements are equivalent:

(i) X is almost spg-normal

- (ii) For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist spg-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For every closed set A and every regular open set B containing A, there is a spg-open set V such that $A \subset V \subset spgcl(V) \subset B$.

Proof: (a) \Rightarrow (b) Let U be an open set and V be a regular open set in an almost spg-normal space X such that $U \cup V = X$. Then (X-U) is closed set and (X-V) is regular closed set with (X-U) \cap (X-V) = ϕ . By almost spg-normality of X, there exist disjoint spg-open sets U_1 and V_1 such that X-U \subset U₁ and X-V \subset V₁. Let G = X- U₁ and H = X-V₁. Then G and H are spg-closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

One can prove that almost spg-normality is also regular open hereditary.

Almost spg-normality does not imply almost spg-regularity in general. However, we observe that every almost spg-normal spg-R₀ space is almost spg-regular.

Theorem 6.8: Every almost regular, *spg*-compact space X is almost spg-normal.

Recall that a function $f: X \rightarrow Y$ is called rc-continuous if inverse image of regular closed set is regular closed.

Now, we state the invariance of almost spg-normality in the following.

Theorem 6.9: If f is continuous M-spg-open recontinuous and almost spg-irresolute surjection from an almost spg-normal space X onto a space Y, then Y is almost spg-normal.

Definition 6.3: A space X is said to be mildly spgnormal if for every pair of disjoint regular closed sets F_1 and F_2 of X, there exist disjoint spg-open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 7: Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$ is Mildly *spg*-normal.

We have the following characterization of mild spgnormality.

 $\begin{tabular}{lll} \textbf{Theorem} & \textbf{6.10} \hbox{:} & For a space X the following are equivalent.} \end{tabular}$

- (i) X is mildly spg-normal.
- (ii) For every pair of regular open sets U and V whose union is X, there exist spg-closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For any regular closed set A and every regular open set B containing A, there exists a spg-open set U such that $A \subset U \subset spgcl(U) \subset B$.

(iv) For every pair of disjoint regular closed sets, there exist spg-open sets U and V such that $A \subset U$, $B \subset V$ and $spgcl(U) \cap spgcl(V) = \phi$.

ISSN: 2277-9655 Impact Factor: 1.852

This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild spg-normality is regular open hereditary.

Definition 6.4: A space X is weakly spg-regular if for each point x and a regular open set U containing $\{x\}$, there is a spg-open set V such that $x \in V \subset clV \subset U$.

Example 8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is weakly *spg*-regular.

Example 9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is not weakly *spg*-regular.

Theorem 6.11: If $f: X \to Y$ is an M-spg-open recontinuous and almost spg-irresolute function from a mildly spg-normal space X onto a space Y, then Y is mildly spg-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^{1}(B)$. Since X is mildly spg-normal, there exists a spg-open set V such that $f^{1}(A) \subset V \subset spgcl(V) \subset f^{-1}(B)$ by Theorem 6.10. As f is M-spg-open and almost spgirresolute surjection, it follows that $f(V) \in SPGO(Y)$ and $A \subset f(V) \subset spgcl(f(V)) \subset B$. Hence Y is mildly spgnormal.

Theorem 6.12: If $f: X \to Y$ is rc-continuous, M-spg-closed map from a mildly spg-normal space X onto a space Y, then Y is mildly spg-normal.

spg-US spaces

Definition 7.1:A sequence $\langle x_n \rangle$ is said to be *spg*-converges to a point x of X, written as $\langle x_n \rangle \rightarrow^{spg} x$ if $\langle x_n \rangle$ is eventually in every *spg*-open set containing x.

Clearly, if a sequence $\langle x_n \rangle$ *r*-converges to a point x of X, then $\langle x_n \rangle$ *spg*-converges to x.

Definition 7.2:X is said to be spg-US if every sequence $\langle x_n \rangle$ in X spg-converges to a unique point.

Definition 7.3: A set F is sequentially *spg*-closed if every sequence in F *spg*-converges to a point in F.

Definition 7.4: A subset G of a space X is said to be sequentially *spg*-compact if every sequence in G has a subsequence which *spg*-converges to a point in G.

Definition 7.5: A point y is a *spg*-cluster point of sequence $\langle x_n \rangle$ iff $\langle x_n \rangle$ is frequently in every *spg*-open

set containing x. The set of all spg-cluster points of $\langle x_n \rangle$ will be denoted by spg-cl(x_n).

Definition 7.6: A point y is spg-side point of a sequence $\langle x_n \rangle$ if y is a spg-cluster point of $\langle x_n \rangle$ but no subsequence of $\langle x_n \rangle$ spg-converges to y.

Definition 7.7: A space X is said to be

- (i) spg-S₁ if it is spg-US and every sequence $\langle x_n \rangle spg$ -converges with subsequence of $\langle x_n \rangle spg$ -side points.
- (ii) spg-S₂ if it is spg-US and every sequence $\langle x_n \rangle$ in X spg-converges which has no spg-side point.

Using sequentially continuous functions, we define sequentially *spg*-continuous functions.

Definition 7.8: A function f is said to be sequentially spg-continuous at $x \in X$ if $f(x_n) \rightarrow^{spg} f(x)$ whenever $\langle x_n \rangle \rightarrow^{spg} x$. If f is sequentially spg-continuous at all $x \in X$, then f is said to be sequentially spg-continuous.

Theorem 7.1: We have the following:

- (i) Every spg-T₂ space is spg-US.
- (ii) Every spg-US space is spg-T₁.
- (iii) X is *spg*-US iff the diagonal set is a sequentially *spg*-closed subset of X x X.
- (iv) X is spg-T₂ iff it is both spg-R₁ and spg-US.
- (v) Every regular open subset of a *spg*-US space is *spg*-US.
- (vi) Product of arbitrary family of *spg*-US spaces is *spg*-US.
- (vii) Every spg- S_2 space is spg- S_1 and Every spg- S_1 space is spg-US.

Theorem 7.2: In a *spg*-US space every sequentially *spg*-compact set is sequentially *spg*-closed.

Proof: Let X be spg-US space. Let Y be a sequentially spg-compact subset of X. Let $<x_n>$ be a sequence in Y. Suppose that $<x_n>$ spg-converges to a point in X-Y. Let $<x_{np}>$ be subsequence of $<x_n>$ that spg-converges to a point $y \in Y$ since Y is sequentially spg-compact. Also, let a subsequence $<x_{np}>$ of $<x_n>$ spg-converge to $x \in X$ -Y. Since $<x_{np}>$ is a sequence in the spg-US space X, x = y. Thus, Y is sequentially spg-closed set.

Theorem 7.3: Let f and g be two sequentially spg-continuous functions. If Y is spg-US, then the set $A = \{x \mid f(x) = g(x)\}$ is sequentially spg-closed.

Proof: Let Y be spg-US and suppose that there is a sequence $\langle x_n \rangle$ in A spg-converging to $x \in X$. Since f and g are sequentially spg-continuous functions, $f(x_n) \rightarrow^{spg}$

f(x) and $g(x_n) \rightarrow^{spg} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially spg-closed.

ISSN: 2277-9655 Impact Factor: 1.852

Sequentially sub-spg-continuity

In this section we introduce and study the concepts of sequentially sub-spg-continuity, sequentially nearly spg-continuity and sequentially spg-compact preserving functions and study their relations and the property of spg-US spaces.

Definition 8.1: A function f is said to be

- (i) sequentially nearly spg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to^{spg} x$ in X, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ such that $\langle f(x_{nk}) \rangle \to^{spg} f(x)$.
- (ii) sequentially sub-spg-continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to^{spg} x$ in X, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle$ and a point $y \in Y$ such that $\langle f(x_{nk}) \rangle \to^{spg} y$.
- (iii) sequentially spg-compact preserving if f(K) is sequentially spg-compact in Y for every sequentially spg-compact set K of X.

Lemma 8.1: Every function f is sequentially sub-spg-continuous if Y is a sequentially spg-compact.

Proof: Let $\langle x_n \rangle \to^{spg} x$ in X. Since Y is sequentially spg-compact, there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ spg-converging to a point $y \in Y$. Hence f is sequentially sub-spg-continuous.

Theorem 8.1: Every sequentially nearly spg-continuous function is sequentially spg-compact preserving.

Proof: Assume f is sequentially nearly spg-continuous and K any sequentially spg-compact subset of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially spg-compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ spg-converging to a point $x \in K$. By hypothesis, f is sequentially nearly spg-continuous and hence there exists a subsequence $\langle x_j \rangle$ of $\langle x_n \rangle$ such that $f(x_j) \rightarrow \int_{y_n}^{y_n} f(x)$. Thus, there exists a subsequence $\langle y_j \rangle$ of $\langle y_n \rangle$ spg-converging to $f(x) \in f(K)$. This shows that f(K) is sequentially spg-compact set in Y.

Theorem 8.2: Every sequentially pre-continuous function is sequentially spg-continuous.

Proof: Let f be a sequentially pre-continuous and $< x_n > \to^p x \in X$. Then $< x_n > \to^p x$. Since f is sequentially pre-continuous, $f(x_n) \to^p f(x)$. But we know that $< x_n > \to^p x$ implies $< x_n > \to^{spg} x$ and hence $f(x_n) \to^{spg} f(x)$ implies f is sequentially spg-continuous.

Theorem 8.3: Every sequentially spg-compact preserving function is sequentially sub-spg-continuous.

Proof: Suppose f is a sequentially spg-compact preserving function. Let x be any point of X and $\langle x_n \rangle$ any sequence in X spg-converging to x. We shall denote the set $\{x_n \mid n=1,2,3,\ldots\}$ by A and $K=A\cup\{x\}$. Then K is sequentially spg-compact since $(x_n) \rightarrow^{spg} x$. By hypothesis, f is sequentially spg-compact preserving and hence f(K) is a sequentially spg-compact set of Y. Since $\{f(x_n)\}$ is a sequence in f(K), there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ spg-converging to a point $y \in f(K)$. This implies that f is sequentially sub-spg-continuous.

Theorem 8.4: A function $f: X \to Y$ is sequentially spg-compact preserving iff $f_{/K}: K \to f(K)$ is sequentially subspg-continuous for each sequentially spg-compact subset K of X.

Proof: Suppose f is a sequentially spg-compact preserving function. Then f(K) is sequentially spg-compact set in Y for each sequentially spg-compact set K of X. Therefore, by Lemma 8.1 above, $f_{/K}$: $K \rightarrow f(K)$ is sequentially spg-continuous function.

Conversely, let K be any sequentially spg-compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially spg-compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ spg-converging to a point $x \in K$. By hypothesis, $f(K) \in K \to f(K)$ is sequentially sub-spg-continuous and hence there exists a subsequence $\langle y_n \rangle$ of $\langle y_n \rangle$ spg-converging to a point $y \in f(K)$. This implies that f(K) is sequentially spg-compact set in Y. Thus, f is sequentially spg-compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub-spg-continuous function to be sequentially spg-compact preserving.

Corollary 8.1: If f is sequentially sub-spg-continuous and f(K) is sequentially spg-closed set in Y for each sequentially spg-compact set K of X, then f is sequentially spg-compact preserving function.

References

- [1] S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.
- [2] Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.
- [3] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.

[4] S. Balasubramanian and P. A.S.Vyjayanthi, On *v*-separation axioms I.J.M.A.,Vol.2(8)8(2011)1464-73.

ISSN: 2277-9655 Impact Factor: 1.852

- [5] S. Balasubramanian and M. Lakshmi Sarada, *gpr*–separation axioms, Bull. Kerala Math. Association, Vol 8(1)(2011)157–173.
- [6] H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.
- [7] Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.
- [8] K.K. Dube and B.L. namdeo, T₀-Limit point of a set and its implications, J.Tripura Math. Soc, Vol.9 (2007)85-96.
- [9] G.L.Garg and D.Sivaraj, presemiclosed mappings, Periodica Math.Hung., 19(2)(1988) .97-106.
- [10] S. R. Malghan and G. B. Navalagi, Almost –p-regular, p-completely regular and almost –p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82),nr.4 (1990),317-326.
- [11] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann.Soc.Sci.Brux.,89(1975)395-402.
- [12] G.B.Navalagi, Further properties of preseparation axioms, (Unpublished)
- [13] G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.
- [14] G. B. Navalagi, Pre-US Spaces, Topology Atlas.
- [15] T.Noiri, Almost continuity and some separation axioms, Glasnik Mat.,9(29)(1974),131-135.
- [16] T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376
- [17] Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol. 21. No. 3, (1995), 273-289
- [18] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat.,5(25)(1970),141-152.
- [19] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1)(1973)27-31.
- [20] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.
- [21] A. Wilansky, Between T_1 and T_2 , Amer. Math. Monthly. 74 (1967), 261-266.